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Abstract

Pollutant transport by shallow water flows on non-flat topography is presented and numerically solved using a finite
volume scheme. The method uses unstructured meshes, incorporates upwinded numerical fluxes and slope limiters to pro-
vide sharp resolution of steep bathymetric gradients that may form in the approximate solution. The scheme is non-oscil-
latory and possesses conservation property that conserves the pollutant mass during the transport process. Numerical
results are presented for three test examples which demonstrate the accuracy and robustness of the scheme and its appli-
cability in predicting pollutant transport by shallow water flows. In this paper, we also apply the developed scheme for a
pollutant transport event in the Strait of Gibraltar. The scheme is efficient, robust and may be used for practical pollutant
transport phenomena.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

During the last years the increase of pollution in rivers, lagoons and coastal regions has attracted much
interest in numerical methods for the prediction of its transport and dispersion. In many situations, this
pollution problem has detriment impact on the ecology and environment and may cause potential risk on
the human health and local economy. Efficient and reliable estimates of damages on the water quality due
to pollution could play essential role in establishing control strategy for environmental protection. Introduc-
tion and utilization of such measures are impossible without knowledge of various processes such as formation
of water flows and transport of pollutants. The mathematical models and computer softwares could be very
helpful to understand the dynamics of both, water flow and pollutant transport. In this respect mathematical
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modeling of water flows and the processes of transport-diffusion of pollutants could play a major role in estab-
lishing scientifically justified and practically reasonable programs for long-term measures for a rational use of
water resources, reduction of pollutant discharge from particular sources, estimation of the impact in the envi-
ronment of possible technological improvements, development of methods and monitoring facilities, predic-
tion and quality management of the environment, etc. The success of the mathematical and computer
methods in solving practical problems depends on the convenience of the models and the quality of the soft-
ware used for the simulation of real processes.

Clearly, the process of pollutant transport is determined by the characteristics of the fluid flow and the
properties of the pollutant. Thus, dynamics of the fluid and dynamics of the pollutant must be studied using
a mathematical model made of two different but dependent model variables: (i) an hydrodynamic variable
defining the dynamics of the flow, and (ii) a concentration variable defining the transport of the pollutant.
In the current work, the hydrodynamic model is based on a two-dimensional shallow water equations while,
an advection—diffusion equation is used for the pollutant transport. For environmental flows, the shallow
water system is a suitable model for adequately describing significant hydraulic processes. The different char-
acteristics of pollutants require an appropriate model to describe their dynamics, nevertheless for a wide class
of dispersed substances the standard advection—diffusion equation can be used. The interaction between the
two processes gives rise to an hyperbolic system of conservation laws with source terms.

The accurate solution of shallow water flows is of major importance in most of pollutant transport predic-
tions. In many practical applications, the shallow water equations have to be solved on non-flat and rough
beds, and also on topographic structures covering different spatial scales. Thus, the treatment of topography
and friction source terms is of major importance in these applications. It is well known that shallow water
equations on non-flat topography have steady-state solutions in which the flux gradients are non-zero but
exactly balanced by the source terms. This well-balanced concept is also known by exact conservation pro-
perty (C-property), compare [13,11,38]. Computational techniques using finite difference, finite element and
finite volume methods have been extensively reported in the literature. Although widely applied to shallow
water equations, the finite difference technique has the major drawback that it does not guarantee strict con-
servation of mass and momentum. Furthermore, the necessity of including process across a range of spatial
scales means that techniques capable of operating on unstructured meshes will be more appropriate than those
such as the finite difference methods which rely on structured and often regular meshes. The finite element
method has been used with irregular meshes of triangular or quadrilateral elements to model shallow water
flows [17,15]. However, the finite element method can experience difficulty when both subcritical and super-
critical flows are encountered [3], and may produce solutions with local mass conservation errors in some
implementations [19]. The finite volume method is therefore adopted in the present work. For a comprehen-
sive review of recent developments in finite volume methods for shallow water equations we refer to [37].

Various numerical methods developed for general systems of hyperbolic conservation laws have been
applied to the shallow water equations. For instance, most shock-capturing finite volume schemes for shal-
low water equations are based on approximate Riemann solvers which have been originally designed for
hyperbolic systems without accounting for source terms such as bed slopes and friction losses. Therefore,
most of these schemes suffer from numerical instability and may produce nonphysical oscillations mainly
because dicretizations of the flux and source terms are not well-balanced in their reconstruction. The
well-established Roe’s scheme [33] has been modified by Bermudez and Vazquez [11] to treat source terms.
This method has been improved by Vazquez [38] for general one-dimensional channel flows. However, for
practical applications, this method may become computationally demanding due to its treatment of the
source terms. Alcrudo and Garcia-Navarro [5] have presented a Godunov-type scheme for numerical
solution of shallow water equations. Alcrudo and Benkhaldoun [4] have developed exact solutions for the
Riemann problem at the interface with a sudden variation in the topography. The main idea in their
approach was to define the bottom level such that a sudden variation in the topography occurs at the inter-
face of two cells. LeVeque [24] proposed a Riemann solver inside a cell for balancing the source terms and
the flux gradients. However, the extension of this scheme for unstructured meshes is not trivial. Numerical
methods based on surface gradient techniques have also been applied to shallow water equations by Zhou
et al. [42]. The TVD-MacCormak scheme has been used by Ming-Heng [28] to solve water flows in variable
bed topography. A different approach based on local hydrostatic reconstructions have been studied by
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Audusse et al. [7] for open channel flows with topography. The performance of discontinuous Galerkin
methods has been examined by Xing and Shu [41] for some test examples on shallow water flows. However,
most of these methods present results with an order of accuracy smaller than the expected in the solutions
for unstructured grids. Besides this fact, it is well known that TVD schemes have their order of accuracy
reduced to first order in the presence of shocks due to the effects of limiters. A central-upwind scheme using
the surface elevation instead of the water depth has been used by Kurganov and Levy [22]. Vukovic and
Sopta [40] extended the ENO and WENO schemes to one-dimensional shallow water equations. Unfortu-
nately, most ENO and WENO schemes that solves real flows correctly are still very computationally expen-
sive. On the other hand, numerical methods based on kinetic reconstructions have been studied by Perthame
and Simeoni in [32] for one-dimensional problems. In the framework of kinetic schemes, Seaid [36] proposed
a class of relaxation methods for solving shallow water equations. The principal drawback of kinetic meth-
ods is that they are very difficult to implement on unstructured grids.

In this paper, we describe the development of a finite volume non-homogeneous Riemann solver (SRNH)
for pollutant transport by shallow water equations. The original SRNH scheme has been recently proposed by
Benkhaldoun and Quivy in [9] and analyzed by Sahmim and Benkhaldoun in [35]. Here, the acronym SRNH
stands for “Solveur de Riemann Non Homogene”. The SRNH scheme has also been numerically examined by
Sahmim et al. [34] for the one-dimensional shallow water equations. Typically, in the above mentioned refer-
ences, the scheme has been implemented for structured meshes. However, unstructured meshes can be highly
advantageous based on their ability to provide local mesh refinement near important bathymetric features and
structures. As a consequence, the ability to provide local mesh refinement where it needed leads to improve
accuracy for a given computational cost as compared to methods that use structured meshes. Therefore,
our objective in the current study, is to extend the SRNH scheme for the numerical simulation of two-dimen-
sional pollutant transport problems on unstructured meshes. The main advantages of the proposed SRNH
method are (i) the implementation on unstructured meshes allowing for local mesh refinement during the sim-
ulation process, (ii) the simultaneous advection in time of the water flow and the pollutant concentration, solv-
ing both problems at the same time and with the same accuracy (iii) the ability to handle calculations of slowly
varying flows or concentrations as well as rapidly varying flows containing also shocks or discontinuities, and
(iv) the capability to satisfy the exact C-property and to guarantee positive values of both, water level and
pollutant concentration in the transient simulations. In the computations presented in this paper we have used
the concentration of pollutants as a monitoring function for mesh refinements. Results presented in this paper
demonstrate high resolution of the proposed method and confirm its capability to provide accurate and effi-
cient simulations for pollutant transport by shallow water flows including complex topography and friction
forces on unstructured grids.

This paper is organized as follows. In Section 2, we present the mathematical equations used to model
pollutant transport problems. Formulation of the SRNH scheme is discussed in Section 3. Computational
results are illustrated in Section 4 for two hypothetical examples in smooth rectangular domains. We finally
present an application of the SRNH scheme to a pollutant transport event in the Strait of Gibraltar. Section 5
summarizes the paper with some concluding remarks.

2. Two-dimensional pollutant transport equations

Shallow water equations have been widely used to model free surface flows of a fluid under the influence of
gravity. This class of equations uses the assumption that the vertical scale is much smaller than any typical
horizontal scale and can be derived from the depth-averaged incompressible Navier—Stokes equations. For
two-dimensional flow problems, these equations are

0h + Oy (hu) + 9,(hv) = 0,

1
0,(hu) + 0, (mﬁ +5 gh2> + 0, (huv) = —gh(So. — Sp), 21

1
&)+ )+, (e + 308 ) = ~ehiSi, - 55).
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where g is the gravitational acceleration, A(z, x, y) is the water depth, u(¢,x,y) and v(¢,x,y) are the depth-aver-
aged velocities in the x- and y-direction, respectively. The source terms in (2.1) account for various physical
and geometric effects. Here, Sy, and S, are the bed slopes given by

Sox = 0Z,  Soy = 0,7, (2.2)

with Z(x,y) denotes the bottom topography, while Sy and Sj;, are the friction losses along the x- and y-direc-
tion, and are defined by

o uu +0? vV v
Sp=—n A Sp =1 T (2.3)

where 7 is the Manning roughness coefficient. It well known that the system (2.1) is strictly hyperbolic with
real and distinct eigenvalues given by

i]zu—@, )vzzu, )v3:u+\/g7h,
w=v-—\/gh, w=v, py=v++/gh

The transport of a pollutant is modelled by the standard advection—diffusion equation
0,(hC) + 0, (huC) + 0,(hvC) =V - (hDVC) + hOQ, (2.5)

where C(¢,x,y) is the depth-averaged pollution concentration, Q is the depth-averaged pollutant source or
sink, and D is an empirical 2 x 2 diffusion matrix. In practical situations the diffusion coefficients depend
on water depth, flow velocity, bottom roughness, wind and vertical turbulence, compare [25] for more details.
For the purpose of the present work, the problem of the evaluation of diffusion coefficients is not considered.
Here, we assume that the pollutants are passive and do not interact with the water flow. However, other inter-
action phenomena such as erosion, sedimentation or chemical reactions can also be incorporated in the above
equations. For more discussions on the particular choice of friction forces in the shallow water equations and
diffusion terms in the pollutant transport we refer the reader to [26,31].
For simplicity in presentation we rewrite the Eqgs. (2.1) and (2.5) in a conservative form as

(2.4)

AW + O.(F(W) — E(W)) +0,(G(W) — G(W)) = Q(W), (2.6)

where W and Q are the vectors of conserved variables and source terms, F and G are the convection tensor
fluxes, F and G are the diffusion tensor fluxes

h 0
wo | | oaw | 980 |
hv —8h(Soy — Syy)
hC hO
hu hv
2 2
Fowy = | 0w =] M
uv hv™ +5gh
huC hvC
0 0
F(W) = ’ . GW) = 0 ,
0 0
hDyd,C + hD,,0,C hD,,3,C + hD,,0,C

where D., Dy,, D, and D,, are entries of the diffusion matrix D assumed to be nonnegative. Remark that we
have considered only a single pollutant with concentration C transported by the shallow water flow, however
the techniques presented in this paper can straightforwardly be extended to multiple pollutants. Eq. (2.6) has
to be solved in a bounded spatial domain Q with smooth boundary I', equipped with given boundary and
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initial conditions. In practice, these conditions are problem dependent and their discussion is postponed for
Section 4 where numerical examples are discussed.
The integral form of Eq. (2.6) over a fixed volume V is given by

6,/VWdV+/V(6X(F(W) _ F(W)) +0,(G(W) — é(W)))dVZ/VQ(W)dV

that, using divergence theorem for the second integral leads to

) /de/aV 7 (W ;n)da—/avﬁv’(w;n)da:/VQ(W)dV, 2.7)

where
F(W;n) = F(W)n, + G(W)n,, 7 (W;n) = F(W)n, + G(W)n,,

and 0V is the surface surrounding the volume V. In (2.7), n = (n,,n,)" denotes the unit outward normal to the
surface OV.

3. Finite volume non-homogeneous Riemann solver

In this section, we formulate the SRNH method used to solve Eq. (2.7). The method uses a grid of trian-
gular cells to facilitate grid generation and localized refinement when modeling pollutant transport in realistic
waterways. A predictor—corrector stepping is used for time integration. In the predictor step, a non-conserva-
tive approach is used to determine the intermediate values whereas in the corrector step, a fully conservative
solution is achieved by solving a series of local Riemann problems based on data from the predictor step.

3.1. Formulation of the SRNH scheme

The spatial domain Q = Q U I is discretized by conforming triangular elements 7 ; as Q = UNe, 7, with Ne
is the total number of elements. Each triangle represents a control volume and the variables are located at the
geometric centres of the cells. In the current work, a cell-centred finite volume method is formulated where all
the dependent variables of the system are represented as piecewise constant in the cell as

1
W,:—/ wdr,
7l )7,

where |7 ;| denotes the area of the element 7 ;. Let us divide the time domain in sub-intervals [¢,, £,,1] with time
stepsize At. Using the finite volume approach on unstructured grid (see Fig. 3.1), Eq. (2.7) is discretized as

Z/ da+—/ QW (3.1)

/EN JEN

Wit =wr —

Fig. 3.1. Generic triangular elements and notations.
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where N(i) is the set of neighboring triangles of the cell 77;, and W} is the average value of W in the cell 7; at
time 7,. Note that the spatial discretization of (2.7) is complete when numerical reconstructions of convection
and diffusion fluxes in (3.1) are selected.

Applied to the convection part in (3.1), the SRNH reconstruction yields

/ F(W;n)do = S(W, W,,S,.n,)T"|. (3.2)
I'ij

with |I';;| is the Lebesgue’s measure of the interface I'; between cells .7; and .7 ; as shown in Fig. 3.1, n;; is the
outward normal to I';, @ is the numerical flux, W; and W; are respectively, the left and right values of W at
cells 7; and 7 ;, compare Fig. 3.1. Remark that the numerical SRNH flux ¢ depends also on the Rusanov
speed S;; which has to be approximated. The SRNH scheme results in

n 1 n n O(?/' g n, T n, U
W[j 2(W +W ) 2S:1] (j (Wj’nij) e/"(‘K]i’nll)) 2Sn 1/7 ( )
33
Wit = ?‘m > P(Wi, W Symy) [Ty + A,
JEN(i)

where of; is a positive control parameter to be chosen according to certain stability conditions analyzed in
[34,10,9,35]. The numerical flux is defined as

O(W;,W;,8;,m;) = 7 (W);iny),
with §7; is the Rusanov speed defined as

Sy = max(|2, ], 1%,1),

where /4 ; denotes the pth eigenvalue in (2.4) evaluated at the state W;. The analysis reported in [10,34,9] re-
veals that the parameter of; in (3.3) can be interpreted as a diffusion coefﬁment in the SRNH scheme such that
more numerical d1551pat10n is added for larger values of o. In the present work, the diffusion coefficient is
approximated in a matrix form such that a local maximum principle for the intermediate state WZ is ensured,
compare [35,34] for more details. Hence,

o = SLVF (Wiiny) ', (3.4)
where V.# (WZ, n;;) is the Jacobian matrix with respect to W, and ij is approximated either by Roe’s average
state or simply by the mean state

W 1 n n
Wi =5 (Wi + W), (3.5)

Using (3.4) in (3.3), the intermediate state can be reformulated as

Wi, = % (W} +W7) — %sgn(Vﬁ"(
Note that an SRNH scheme with constant o;; has been used by Benkhaldoun and Quivy [9] for hyperbolic
systems with source terms. Note also that, for homogeneous systems (Q = 0), the reconstruction (3.3) using
(3.5) reduces to the VFRoe scheme early studied by Masella et al. [27].

It should be pointed out that the selection (3.4) leads to a first-order SRNH scheme. In order to develop a
second-order SRNH scheme, we use a MUSCL method incorporating slope limiters in the spatial approxima-
tion and a two step Runge—Kutta method for time integration. The MUSCL projection uses an approxima-
tion of the state W by linear interpolation at each cell interface I';;

1
nu))(w;l - Wf) +E|V97( U7nll) l|(Xl'- (3-6)

tj7 ij

1 —
Wij - W,‘ + EVW, . X,‘Xj,
X B (3.7)



186 F. Benkhaldoun et al. | Journal of Computational Physics 226 (2007) 180-203

where X; = (x;,»,)" and X; = (x, yj)T with (x;,y;) and (x;,y;) are the barycentre coordinates of cells 7; and
7 ;, respectively. Thus, the cell gradients are evaluated by minimizing the quadratic functional

PX,Y) =D (Wit (4 —x)X + (0 = 2)Y =W, [, (3.8)

jemf(i)

where m(i) is the set of indices of neighborhood cells that have a common edge or vertex with the control
volume 7;. To preserve the TVD property of the SRNH scheme we use techniques based on slope limiters.
It is preferable to apply simple slope limiters in which the degrees of freedom W; for a given cell 7 ; are com-
pared to the average of the approximate solution over .7 ; and the average of the neighboring cells of the given
edge. The well-established MinMod limiter can be an example of these limiter functions. The MindMod lim-
iter is very easy to implement, but it can cause numerical smoothing of the solution. More sophisticated lim-
iters that are less dissipative are also applicable. For instance, in the computational results presented in Section
4, we have also applied the VanAlbada limiter [39].

To discretize the diffusion fluxes in (2.7) we adapt a Green—Gauss diamond reconstruction, see for exam-
ple [12] and further references are therein. This method has been selected because it is second-order accurate,
it can be applied on general unstructured adaptive grids, it does not require serious restrictions on the angles
of triangles, and it can be easily incorporated in our SRNH scheme. Hence, a co-volume, coV;, is first con-
structed by connecting the barycentres of the elements that share the edge I';; and its endpoints as shown in
Fig. 3.1. Then, in the x-direction, diffusion fluxes in the transport equation are evaluated at an inner edge I';
as

Dhll‘»» Cy, +Cy

Dhd,(C)n,do = 2 ' : /nx( do, (3.9)
/Fif |COVU| eeazco:l/,, 2 €

where Ny and N, are the nodes of the edge € on the surface dcoV;;, Cy, and Cy, are the values of the concen-

tration C in the node N, and N, respectively. The discretization in y-direction of diffusion fluxes is carried out

in an analogous manner. Note that, in (3.9) we have assumed constant diffusion coefficient. In the case of

space dependent diffusion, the coefficient D in (3.9) should be replaced by

Dy, + Dy, + Dy, + Dy,
4 )
with Dy,, k =1,...,4, are values of the diffusion coefficient D at the co-volume nodes N, approximated by
linear interpolation from the values on the cells sharing the same vertex Ny.

3.2. Features of the SRNH scheme

3.2.1. Discretization of the convective terms

In the predictor step of the SRNH reconstruction (3.3), the source terms are treated using the ideas devel-
oped in [1,29]. First, we project the shallow water equations on the local cell outward normal # and tangential
T = nt as follows:

O+ 0, (huy) = 0,
1

&u(huy) + 8, (huj +3 gh2> — _ghd,Z,

O;(hu.) + 0, (hu,u,) =0,

3:(hC) + 8, (hCu,) = 0,

(3.10)

where u, = (u,v) - and u, = (u,v) - t are the normal and tangential velocity, respectively. In this case, the
predictor step becomes

n 1 n n 1 7 n n 1 T\~ n
U =5 (U; +U)) = 5 5en[VE,(0))(U} - U}) + 5| VF,(0) Q. (3.11)

with sgn[A] stands for the sign matrix of A and
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h hu, 0
hu i +1gh? b+ h; 1
u=| ", FUu=| " ? . Ql=—g——(z,-2Z
hu, (V) huuyt, Q=5 @=2)|
hC hCu, 0
In (3.11), U is the Roe’s average state given by
1
u;\/h_,’+u/\/h_/ + U;\/h—[+v/\/h_/’
| N Y Y T
ﬁ = 5 (h, + h/) o lli\/h—z‘H‘j\/h—j + ”i\/h—i+”f\/}'_f . <312)
Vhi++/hj Ty Vit /b "I
Ci/Ri+Ci /b
Vhi+r/h

The sign and inverse matrices of the Jacobian are defined as
sgn[VF,(U)] = 2(U)sgn[4(U)}2 ' (U), |VF,(U)"'| = 2(0)|(A(0)) "' |2 (0),

where 2(U) and A(U) are respectively, the right eigenvector and the diagonal matrices reconstructed as

1 00 1 i,—¢ 0 0 0
g @ 00 mre|  f 0 @ 00
o e 10 @ | 0 0 # 0 ’
c 01 ¢C 0 0 0 u+c
up+c
'122* _% 0 0
gi_| %= 0 10
| =Cc o0 o0 1}

where ¢ = \/gh is the wave speed calculated at the interface of control volume. It is easy to verify that the sign
and inverse matrices in (3.11) are

sen(2; )3 —sgn(/3) sen(23)—sgn(’;)
1 32& 3)41 3 — 1 0 0
2l 172 23] =41
[ (_)] 1 326 3|41 326 1 0 0
sgnvFﬂU = — (sgn(y)/3—sgn(l3)L = = n(43)—sgn(/ -~ ’

i, (sg Ca)issentUa)is _ Sgn(uq)) i, U)o () 0

C (sgna])is;gn(zﬂ] _ sgn(ﬁ,7)) Csenlla)senCi) 0 sgn(i,)
. 2¢ . . 2¢ . 0

sgn(2y)/3—sgn(/3)7 sgn(Z3)—sgn(;)
1 722 3)M 3 5 1 O O

U)! LR SIS
|VF’7(U) | = 77 Pl Vsl 1 = 173l 14l 1 O
U\ T2 7, | U\ T3 Tig]
B h S
Cl a1 o B4l
C 2c iy C( 2 ) 0

where 1, = u, —cand I3 = i, + ¢. Using the above matrices, the solution state U;.’j can be easily obtained from
the predictor stage (3.11). Once the state Uj; is computed, the state W} is recovered by using the transforma-
tions v = (u.,uy) - n and u = (U, u,) - 7.

|-

=

il
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3.2.2. Discretization of the source terms

The source term approximation Q; in the corrector step is reconstructed in such a way to satisfy the C-
property, see [10,34]. Following the definition by [11], a numerical scheme is said to satisfy the C-property
for Eq. (2.6) if

K"+ Z" = constant, u" =1v" =0, (3.13)
hold for stationary flows at rest. Hence, for stationary flow regime, the system (2.6) reduces to
h 0 0 0
0 Lon® 0 —ghd.Z
2 o |2 4o, L =] " . (3.14)
0 0 | 58h —gho,Z
hC 0 0 hQ
Applied to the system (3.14), the predictor stage (3.11) in the SRNH scheme gives
n hil4-h"
0 0
0 N 0 '
(hC)Z W CY ;hi C}

which leads (since u = v = 0) to W}, = Uj.. Therefore, the numerical flux in the SRNH scheme becomes

0 0
1 ny2
>8(h) 0
.g; W",n, = 2 v )(i'+ iie
( ij ]) 0 Nyij %g(h:’])z Nyij
0 0
For stationary flows, the corrector stage gives
0 0
1 n\2
728 hi' Nyij - r.haxZ
> | SR T e 7. (3.15)
J Eg(hljj) yij -8 fur,» hd,Z
0 0
In the SRNH scheme, the right source terms are approximated as
/ ha,(Z = }_IZ[/ andO' = ;_l;l Z Zl-jnx,-j|F,-j‘, (316)
7 g JEN(i)

with a similar equation for the second term in (3.15). In (3.16), the approximation 4", has to be determined
such that the C-property is verified. This is achieved if the condition

1 n\2 N
3 B n| Tyl = =T > Zinag| Ty,
JEN(i) JEN(i)

is satisfied in the corrector stage. Since 4} + Z; = h + Z;, then

Z. 47, h + i
Z Zin|I'y| = Z %”xi;“ﬂﬂ == Z F [ Ty
JEN(i) JEN(i) JEN(i)
Hence,

_ 1 e (A ani' Iy
h;l _ — Z/EN( )( Zl) ]| ]| ) (3'17)
2175 3 enwhimal Lyl

For the other source term in y-direction, a similar approach applied for £, .
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3.2.3. Adaptivity procedure

The mesh generation is based on the Delaunay triangulation [18], which uses a curvature-dependent gen-
eration strategy designed to produce smaller elements in regions of high curvature in the spatial domain. In
order to improve the efficiency of the SRNH scheme, we have performed a mesh adaptation to construct a
nearly optimal mesh able to capture the small hydraulic and pollutant features without relying on extremely
fine grid in smooth regions far from concentration or hydraulic jumps. In the present work, this goal is
achieved by using an error indicator for the concentration of pollutant. This indicator requires only informa-
tion from solution values within a single element at a time and it is easily calculated. Other adaptation tech-
niques based on the estimation of gradients such as those studied by Babuska et al. [8] can also be applied.
However, these error estimations can be computationally very demanding since a global solution step is
needed to project the gradients on a linear basis.

The adaptive procedure used here is based on multilevel refinement and unrefinement, it is aimed at con-
structing an adaptive mesh which dynamically follows the unsteady solution of the physical problem. This
procedure has been used recently by Elmahi et al. [12] for adaptive finite volume solution of a combustion
system. The algorithm begin by selecting some criterion (here based on the concentration of pollutant), which
permit to make the refinement and unrefinement decisions. A list S of elements to be refined, their degree of
refinement, and those to be unrefined is then established. This is accomplished by filling an integer array
denoted for example by I4ADIV for all triangles of the coarse mesh. At time ¢ = ¢* and for a macro-element
T ., IADIV (7 ;) = m means that the element .7 ; has to be divided into 4™ triangles. Thus, starting from a mesh
level 7, made of N cells, the next mesh level contains N/*") = 4 x N cells. Clearly, this process can be
repeated as long as [ < my,,x with m,,, being the number of refinement levels. In order to obtain a mesh which
is not too distorted, the algorithm decides to divide into two equal parts some additional edges. An illustration
of the procedure is shown in Fig. 3.2.

In our simulations, the adaption criterion is based on the normalized concentration of the pollutant, and is
evaluated as

(7))

Crit"(7,) = ———F—,
(7) maxs,C(7 ;)

(3.18)

where C(7;) is the pollutant concentration on cell ;. The advantage of this normalization is that the crite-
rion (3.18) is known to take its values in the interval [0, 1]. Hence, an adaptation procedure can be performed
as follows:

Given a sequence of three real numbers {r,,} such that 0 = ry <r; < r, <r; <ry = 1. If a macro-element
7 ; satisfies the condition

rm < Crit"(7;) <rpa, m=0 3.

gee ey

then 7, is divided into 4™ triangles. Note that the values of {r|,r,,7;} can be interpreted as tolerances to be set
by the user resulting into a three-level refining.

Level 0 Level 1

Fig. 3.2. Example of a two-level refining for triangular elements.
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3.2.4. Boundary conditions

The treatment of boundary conditions in the SRNH scheme is performed using similar techniques as those
described in [30]. For the computational examples considered in this paper, boundary conditions are enforced
on the corrector solution by computing fluxes at boundaries. On the predictor solution and the slopes of
dependent variables, boundary conditions are enforced in boundary cells by setting the required variables
to the corresponding values of the adjacent inner cells. When slopes are based on vertex values, the solution
at boundary vertices is computed by interpolation from two neighboring centroids. When slopes are based on
centroid values, the three points used to estimate the slopes are the centroid and the two neighboring centroids
inside the computational domain. For further details on the implementation of boundary conditions for the
SRNH scheme we refer to [30,34].

4. Numerical results and applications

Three test examples are selected to check the accuracy and performance of the proposed SRNH scheme.
The first example is used to assess different features of our scheme such as accuracy in smooth regions and
discontinuous resolution in a dam-break problem on non-flat topography. The second example solves a pol-
lutant transport in a squared cavity with smooth bottom. As a third example we apply our adaptive SRNH
scheme for a pollutant transport in the Strait of Gibraltar. All the results presented in this section are com-
puted with variable time stepsizes At adjusted at each step according to

At = Cr- min(Atconva Atdiff)a
where

Atcony = min 7l +17 Atgier = min ( 7 >
M\ 210y max (o)l | 1 T \2max(Dyx, Dy, Dyy, Dyy)

with I';; is the edge between two cells .7; and .7 ;, and Cr is the Courant number set to 0.8 for all test cases to
ensure stability. Three-level refining is used and the gravitational acceleration is fixed to g = 9.81 m/s* for all
examples presented here.

4.1. Shallow water flow over a forward facing step
We consider a two-dimensional dam-break problem over a forward facing step. The computational domain

is a rectangular channel with dimensions L x K and the length before the step is / as depicted in Fig. 4.1. The
bottom bed is assumed to be frictionless (S = Sj; = 0) and the bed elevation is specified as

e ke

R ad

N e——— Ty

z

Fig. 4.1. Geometrical description of shallow water flow past a forward facing step.




F. Benkhaldoun et al. | Journal of Computational Physics 226 (2007) 180-203 191

- )_{217 if x <1,
VTG, x> L
Initial conditions are given by
hy, if x <, u;, if x <1,
h077 = . 077 = . UO?’ :0'
(0.%.3) {h,, ity 0= {u x>, 0

This test example is very interesting since it includes most of flow structures such as shocks, rarefaction waves
and contact discontinuities. Recall that in the framework of shallow water equations applied to dam-break
problems, an important dimensionless parameter is the Froude number Fr, defined as the ratio between the
water velocity and the celerity ¢ = +/gh. The Froude number characterizes the subcritical (F- < 1) or supercrit-
ical (Fr > 1) regime of the water flow. Both flow regimes are examined for this test example.

First we run the SRNH scheme for the subcritical case. This test aims to compare the performance of the
SRNH scheme to the Vazquez scheme [38] widely known in the literature. We used L=12m, K=1m, /=
6m, z;=0m, z,=1m, i;=5m, h,=1m, and u; = u, =0 m/s. An unstructured grid with 14471 elements
and 7657 nodes is used for both schemes. The water free surface and the water discharge are illustrated in
Fig. 4.2 at time 1 =0.5s. In Fig. 4.3, we show cross-sections at the channel mid-length (y = K/2) for the
obtained results. We present the water head 7+ Z + ;‘—;, the water free surface 4+ Z, the water discharge
hu, and the Froude number Fr. Along with the results shown in Fig. 4.3 we have included the exact solution
calculated using the procedure from [4].

As can be seen in Fig. 4.3, both schemes exhibit a slight peak between the dam and the shock just on region
where the bottom step is localized, compare the zooming plots in Fig. 4.3 for the water discharge. However,
the amplitude of the peak is most pronounced in the Vazquez scheme. In this test case, the original Vazquez
scheme shows a high level of oscillations due to the irregular bottom which cannot be handled because the
imbalance between the source and flux terms, while a considerable improvement is observed with our SRNH
scheme. It should be stressed that these errors in the discharge are expected since the correct capturing of the
water discharge is more difficult than the water height in this class of test cases. The results shown here com-
pare favorably with those published in the literature for the dam-break problem over a non-smooth bottom,
see for example [38,24,11].

In the second run, we examine the accuracy between the first-order SRNH and the second-order SRNH
schemes for the transcritical case. The following set of parameters is chosen L =20m, K=1m, /=10 m,
z7=0m, z,=1m, y=5m, h,=1m, u;= —4m/s, and u, = 9 m/s. The MinMod limiter is used and results

Water free surface Water discharge

Fig. 4.2. Water free surface and water discharge for the subcritical test case at t =0.5s.
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Free surface

Discharge

are presented at time z =0.7 s using an unstructured fixed grid with 17152 elements and 8793 nodes. The
obtained results are displayed in Figs. 4.4 and 4.5. As in the previous run we present cross-sections at the chan-
nel mid-length (y = K/2) for the water free surface, water head, water discharge and Froude number. How-
ever, for a better comparison, we present in Fig. 4.5 results obtained on a coarser mesh with 2173 elements
and 1243 nodes. Analytical solutions obtained using the method from [4] are also included in this figure. It
is known that roll waves or discontinuous periodic traveling waves occur in open channel flow problems when
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